首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211551篇
  免费   24164篇
  国内免费   12121篇
电工技术   9284篇
技术理论   75篇
综合类   18514篇
化学工业   36198篇
金属工艺   5694篇
机械仪表   7104篇
建筑科学   35304篇
矿业工程   19052篇
能源动力   8225篇
轻工业   14177篇
水利工程   21961篇
石油天然气   11151篇
武器工业   1228篇
无线电   8964篇
一般工业技术   15264篇
冶金工业   12629篇
原子能技术   1965篇
自动化技术   21047篇
  2024年   388篇
  2023年   2896篇
  2022年   5427篇
  2021年   8113篇
  2020年   6998篇
  2019年   5852篇
  2018年   5907篇
  2017年   7137篇
  2016年   9086篇
  2015年   9633篇
  2014年   15500篇
  2013年   14072篇
  2012年   15490篇
  2011年   15038篇
  2010年   11701篇
  2009年   12099篇
  2008年   11345篇
  2007年   14638篇
  2006年   13706篇
  2005年   12271篇
  2004年   9560篇
  2003年   8525篇
  2002年   6684篇
  2001年   4972篇
  2000年   4056篇
  1999年   3223篇
  1998年   2322篇
  1997年   1881篇
  1996年   1597篇
  1995年   1433篇
  1994年   1194篇
  1993年   886篇
  1992年   734篇
  1991年   582篇
  1990年   484篇
  1989年   445篇
  1988年   282篇
  1987年   255篇
  1986年   196篇
  1985年   187篇
  1984年   195篇
  1983年   118篇
  1982年   86篇
  1981年   61篇
  1980年   80篇
  1979年   44篇
  1966年   31篇
  1964年   46篇
  1962年   73篇
  1957年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The extracellular matrix (ECM) is important for normal development and disease states, including inflammation and fibrosis. To understand the complex regulation of ECM, we performed a suppressor screening using Caenorhabditis elegans expressing the mutant ROL-6 collagen protein. One cuticle mutant has a mutation in dpy-23 that encodes the μ2 adaptin (AP2M1) of clathrin-associated protein complex II (AP-2). The subsequent suppressor screening for dpy-23 revealed the lon-2 mutation. LON-2 functions to regulate body size through negative regulation of the tumor growth factor-beta (TGF-β) signaling pathway responsible for ECM production. RNA-seq analysis showed a dominant change in the expression of collagen genes and cuticle components. We noted an increase in the cav-1 gene encoding caveolin-1, which functions in clathrin-independent endocytosis. By knockdown of cav-1, the reduced TGF-β signal was significantly restored in the dpy-23 mutant. In conclusion, the dpy-23 mutation upregulated cav-1 expression in the hypodermis, and increased CAV-1 resulted in a decrease of TβRI. Finally, the reduction of collagen expression including rol-6 by the reduced TGF-β signal influenced the cuticle formation of the dpy-23 mutant. These findings could help us to understand the complex process of ECM regulation in organism development and disease conditions.  相似文献   
52.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
53.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   
54.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
55.
Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising solution for the conversion and storage of solar energy. Because sluggish water oxidation is the bottleneck of water splitting, the design and preparation of an efficient photoanode is intensively investigated. Currently, all known photoanode materials suffer from at least one of the following drawbacks: ① low carriers separation efficiency; ② sluggish surface water oxidation reaction; ③ poor long-term stability; ④ insufficient water adsorption and gas desorption. Core–shell configurations can endow a photoanode with improved activity and stability by coating an overlayer that plays energetic, catalytic, and/or protective roles. The construction strategy has an important effect on the activity of a core–shell photoanode. Nonetheless, the mechanism for the improvement of performance is still ambiguous and is worthy of a closer examination. In this review, the successes and challenges of core–shell photoanodes for water oxidation, focusing on synthesis strategies as well as functionalities (facilitating carrier separation, surface reaction promotion, corrosion prevention, and bubble detachment) are explored. Finally, the perspectives of this class of materials in terms of new opportunities and efforts are discussed.  相似文献   
56.
盘扣式支撑架具有承载力强、方便安全、结实耐用等优点,被广泛应用于地铁施工。本文以广州市轨道交通十八号线万顷沙车辆段为例,对承插型盘扣式支撑架在地铁车辆段工程中的具体应用进行了详细说明,以期为同类工程提供参考。  相似文献   
57.
为研究复杂海域环境中海洋平台双船拆除方法的安全性与可操作性,采用水动力数值计算与水池模型试验相结合的方法进行研究。将双船水动力耦合计算与水池模型试验进行对比,在相对理想海况下,结合与实际工况接近的规则波作用,进行驳船水动力性能变化与运动响应的幅值分析。在受力分析方面,对甲板耦合装置进行改良设计,对比试验数据与数值计算数据,得到受力在合理范围内的结论。研究内容为实际施工的合理性提出一定的指导性意见。  相似文献   
58.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
59.
60.
Plasmonic gold nanocrystal represents plasmonic metal nanomaterials, and has a variety of unique and beneficial properties, such as optical signal enhancement, catalytic activity, and photothermal properties tuned by local temperature, which are useful in physical, chemical, and biological applications. In addition, the inherent properties of predictable programmability, sequence specificity, and structural plasticity provide DNA nanostructures with precise controllability, spatial addressability, and targeting recognition, serving as ideal ligands to link or position building blocks during the self-assembly process. Self-assembly is a common technique for the organization of prefabricated and discrete nanoparticle blocks for the construction of extremely sophisticated nanocomposites. To this end, the integration of DNA nanotechnology with Au nanomaterials, followed by assembly of DNA-functionalized Au nanomaterials can form novel functional Au nanomaterials that are difficult to obtain through conventional methods. Here, recent progress in DNA-assembled Au nanostructures of various shapes is summarized, and their functions are discussed. The fabrication strategies that employ DNA for the self-assembly of Au nanostructures, including dimers, tetramers, satellites, nanochains, and other nanostructures with more complex geometric configurations are first described. Then, the characteristic optical properties and applications of biosensing, bioimaging, drug delivery, and therapy are discussed. Finally, the remaining challenges and prospects are elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号